Advances in Meteorology
 Journal metrics
See full report
Acceptance rate22%
Submission to final decision69 days
Acceptance to publication20 days
CiteScore3.900
Journal Citation Indicator0.420
Impact Factor2.223

Article of the Year 2021

Spatiotemporal Rainfall Distribution of Soan River Basin, Pothwar Region, Pakistan

Read the full article

 Journal profile

Advances in Meteorology publishes research in all areas of meteorology and climatology. Topics include forecasting techniques and applications, meteorological modelling, data analysis, atmospheric chemistry and physics, and climate change.

 Editor spotlight

Dr Jamie Cleverly, the journal’s Chief Editor, is based at James Cook University in Cairns, Australia. Their research interests include carbon, water and energy fluxes of arid-land Acacia swales; physics of the atmospheric surface layer and interactions with terrestrial ecosystems.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Improving Wind Speed Forecasting for Urban Air Mobility Using Coupled Simulations

Hazardous weather, turbulence, wind, and thermals pose a ubiquitous challenge to Unmanned Aircraft Systems (UAS) and electric-Vertical Take-Off and Landing (e-VTOL) aircrafts, and the safe integration of UAS into urban area requires accurate high-granularity wind data especially during landing and takeoff phases. Two models, namely, Open-Source Field Operation and Manipulation (OpenFOAM) software package and Weather Research and Forecasting (WRF) model, are used in the present study to simulate airflow over Downtown Oklahoma City, Oklahoma, United States. Results show that computational fluid dynamics wind simulation driven by the atmospheric simulation significantly improves the simulated wind speed because the accurate modeling of the buildings affects wind patterns. The evaluation of different simulations against six Micronet stations shows that WRF-CFD numerical evaluation is a reliable method to understand the complicated wind flow within built-up areas. The comparison of wind distributions of simulations at different resolutions shows better description of wind variability and gusts generated by the urban flows. Simulations assuming anisotropy and isotropy of turbulence show small differences in the predicted wind speeds over Downtown Oklahoma City given the stable atmospheric stratification showing that turbulent eddy scales at the evaluation locations are within the inertial subrange and confirming that turbulence is locally isotropic.

Research Article

Comparison of the Applicability of Two Reanalysis Products in Estimating Tall Tower Wind Based on Multiple Linear Regression and Artificial Neural Network in South China

Climate reanalysis products have been widely used to overcome the absence of high-quality and long-term observational records for wind energy users. In this study, the applicability of two popular reanalysis datasets (ERA5 and MERRA2) in estimating wind characteristics for four tall tower observatories (TTOs) in South China was assessed. For each TTO, linear and nonlinear downscaling techniques, namely, multiple linear regression (MLR) and an artificial neural network (ANN), respectively, were adopted for the downscaling of the scalar wind speed and the corresponding U/V components. The downscaled wind speed and U/V components were subsequently compared with the TTO observations by correlation coefficient (Pearson’s r), the root mean square error (RMSE), the uncertainty analysis (U95), and the reliability analysis (RE). According to the results, ERA5 had a better applicability (higher Pearson’s r and RE, but lower RMSE and U95) in estimating TTO wind speed than MERRA2 when using both the MLR and ANN downscaling method. The average Pearson’s r, RE, RMSE, and U95 of the downscaled wind from ERA5 by the MLR (ANN) method were 0.66 (0.69), 40.8% (41.8%), 2.20 m/s (2.11 m/s), 0.181 m/s (0.179 m/s), respectively, and 0.60 (0.63), 38.0% (39.7%), 2.32 m/s (2.25 m/s), 0.189 m/s (0.187 m/s), respectively, for MERRA2. The wind components analysis showed that the better performance of ERA5 was attributed to its smaller error in estimating V component than MERRA2. For the wind direction, the two reanalysis datasets did not display distinct differences. Additionally, the misalignment of the wind direction between the reanalysis products and the TTOs was higher for the secondary predominant wind direction (SPWD) than for the predominant wind direction (PWD). Furthermore, we found that the reanalysis U wind had a higher RMSE but a lower RE and Pearson’s r than the V wind, which indicates that the misalignment in the wind direction was mainly associated with the deviation in the U component.

Research Article

Variation of Leaf Area Index (LAI) under Changing Climate: Kadolkele Mangrove Forest, Sri Lanka

Mangroves are an essential plant community in coastal ecosystems. While the importance of mangrove ecosystems is well acknowledged, climate change is expected to have a considerable negative impact on them, especially in terms of temperature, precipitation, sea level rise (SLR), ocean currents, and increasing storminess. Sri Lanka ranks near the bottom of the list of countries researching this problem, even though the scientific community's interest in examining the variation in mangrove health in response to climate change has gained significant attention. Consequently, this study illustrates how the leaf area index, a measure of mangrove health, fluctuates in response to varying precipitation, particularly during droughts in Sri Lanka's Kadolkele mangrove forest. The measurements of the normalized difference vegetation index (NDVI) were used to produce the leaf area index (LAI), which was then combined with the standard precipitation index (SPI) to estimate the health of the mangroves. The climate scenario, RCP8.5, was used to forecast future SPI (2021–2100), and LAI was modeled under the observed (1991–2019) and expected (2021–2100) drought events. The study reveals that the forecasted drought intensities modeled using the RCP8.5 scenario have no significant variations on LAI, even though some severe and extreme drought conditions exist. Nevertheless, the health of the mangrove ecosystem is predicted to deteriorate under drought conditions and rebound when drought intensity decreases. The extreme drought state (-2.05) was identified in 2064; therefore, LAI has showcased its lowest (0.04). LAI and SPI are projected to gradually increase from 2064 to 2100, while high fluctuations are observed from 2021 to 2064. Limited availability of LAI values with required details (measured date, time, and sample locations) and cloud-free Landsat images have affected the study results. This research presents a comprehensive understanding of Kadolkele mangrove forest under future droughts; thus, alarming relevant authorities to develop management plans to safeguard these critical ecosystems.

Research Article

Characterization of Local Climate and Its Impact on Faba Bean (Vicia faba L.) Yield in Central Ethiopia

Climate change is a major threat to agricultural production and undermines the efforts to achieve sustainable development goals in poor countries such as Ethiopia that have climate-sensitive economies. The objective of this study was to assess characterization of local climate and its impact on productivity faba bean (Vicia faba L.) varieties (Gora and Tumsa) productivity in Welmera watershed area, central Ethiopia. Historical climate (1988–2017) and eight years of crop yield data were obtained from National Meteorological Agency of Ethiopia and Holeta Agricultural Research Center. Trend, variability, correlation, and regression analyses were carried out to characterize the climate of the area and establish association between faba bean productivity and climate change. The area received mean annual rainfall of 970 mm with SD of 145.6 and coefficient of variation (CV %) of 15%. The earliest and latest onset of rainfall were April 1 (92 DOY) and July 5 (187 DOY), whereas, the end date of rainy season was on September 2 (246 DOY) and October 31 (305 DOY), respectively. The average length of the growing period was 119 days, with a CV% of 35.2%. The probability of dry spell less than 7 days was high (>80%) until the last decade of May (151 DOY); however, the probability sharply declined and reached 0% on the first decade of July (192 DOY). Kiremt (long rainy season that occurs from June to September) and belg (short rainy season that falls from February to April/May) rainfall had increasing trends at a rate of 4.7 mm and 2.32 mm/year, respectively. The annual maximum temperature showed increasing trend at a rate of 0.06°C per year and by a factor of 0.34°C, which is not statistically significant. The year 2014 was exceptionally drought year while 1988 was wettest year. Kiremt (JJAS) start of rain and rainy day had strong correlation and negative impact on Gora yield with (r = −0.407 and −0.369), respectively. The findings suggests large variation in rainfall and temperature in the study area which constraints faba bean production. Investment on agricultural sector to enhance farmer’s adaptation capacity is essential to reduce the adverse impacts of climate change and variability on faba bean yield. More research that combines household panel data with long-term climate data is necessary to better understand climate and its impact on faba bean yield.

Research Article

Interannual Variations of Water and Carbon Dioxide Fluxes over a Semiarid Alpine Steppe on the Tibetan Plateau

Water and carbon exchanges between grassland and the atmosphere are important processes for water balance and carbon balance. Based on eddy covariance observations over a semiarid alpine steppe ecosystem in Bange on the Tibetan Plateau during the growing season from 2014 to 2017, the variations in evapotranspiration (ET), net ecosystem exchange (NEE), and their components and the associated driving factors were analyzed. Linear and nonlinear models were applied to investigate the relationships between fluxes and their controlling factors over different timescales. The results show that the average ET for the growing season ranged from 1.1 to 2.4 mm/d with an average of 2.0 mm/d for the four consecutive years. Drought conditions reduced the surface conductance and hence the Priestley–Taylor coefficient. Mean T/ET was low (0.34) due to low vegetation cover. Plant growth increased the T/ET ratio during the growing season, whereas soil water content (SWC) explained most of the variation of ET and E on daily and monthly scales. The Enhanced Vegetation Index (EVI) was the most important controlling factor for temperature. Transpiration increased with SWC in dry conditions. For the growing season in 2014, 2016, and 2017, Bange was a carbon sink, while it was a carbon source in 2015. The largest CO2 flux was higher and the temperature sensitivity coefficient (Q10) was lower for 2015 than for the other three years. SWC affected these photosynthesis and respiration parameters. The ratio of respiration (Re) to gross primary production (GPP) was the highest during the 2015 growing season. Both on daily and monthly scales, Re was positively and linearly correlated with GPP. The most important controlling factor for the CO2 flux was EVI on daily and monthly scales.

Research Article

The Influence of Data Length on the Performance of Artificial Intelligence Models in Predicting Air Pollution

Air pollution is one of humanity's most critical environmental issues and is considered contentious in several countries worldwide. As a result, accurate prediction is critical in human health management and government decision-making for environmental management. In this study, three artificial intelligence (AI) approaches, namely group method of data handling neural network (GMDHNN), extreme learning machine (ELM), and gradient boosting regression (GBR) tree, are used to predict the hourly concentration of PM2.5 over a Dorset station located in Canada. The investigation has been performed to quantify the effect of data length on the AI modeling performance. Accordingly, nine different ratios (50/50, 55/45, 60/40, 65/35, 70/30, 75/25, 80/20, 85/15, and 90/10) are employed to split the data into training and testing datasets for assessing the performance of applied models. The results showed that the data division significantly impacted the model's capacity, and the 60/40 ratio was found more suitable for developing predictive models. Furthermore, the results showed that the ELM model provides more precise predictions of PM2.5 concentrations than the other models. Also, a vital feature of the ELM model is its ability to adapt to the potential changes in training and testing data ratio. To summarize, the results reported in this study demonstrated an efficient method for selecting the optimal dataset ratios and the best AI model to predict properly which would be helpful in the design of an accurate model for solving different environmental issues.

Advances in Meteorology
 Journal metrics
See full report
Acceptance rate22%
Submission to final decision69 days
Acceptance to publication20 days
CiteScore3.900
Journal Citation Indicator0.420
Impact Factor2.223
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.