Journal of Toxicology
 Journal metrics
See full report
Acceptance rate23%
Submission to final decision101 days
Acceptance to publication18 days
CiteScore7.300
Journal Citation Indicator0.670
Impact Factor-

Indexing news

Journal of Toxicology has recently been accepted into Food Science & Technology Abstracts

Read the full article

 Journal profile

Journal of Toxicology publishes papers in all areas of toxicological sciences, including the structure, function, and mechanism of agents toxic to humans and/or animals, as well as toxicological medicine, safety evaluation, and environmental health.

 Editor spotlight

Chief Editor, Professor You-Cheng Hseu, is based at China Medical University. His research focuses on the biology of free radicals, bioactivity in traditional Chinese medicines, and antioxidants and cosmeceutics.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Prenatal Developmental Toxicity and Histopathological Changes of the Placenta Induced by Syzygium guineense Leaf Extract in Rats

Many of the traditional herbal products are served to the consumer without proper efficacy and safety investigations. A laboratory-based experimental study was employed to investigate the toxic effects of Syzygium guineense leaf extract on the fetal development and histopathology of the placenta in rats. Fifty pregnant Wistar albino rats were randomly allocated into five groups, each consisting of 10 rats. S. guineense leaf extract, at doses of 250, 500, and 1000 mg/kg of body weight, was respectively administered to groups I-III rats. Groups four and five were control and ad libitum control, respectively. The number of resorptions, implantation sites, and live or dead fetuses was counted. The weight and crown-rump length of the fetuses were measured. The histopathological investigation of the placenta was conducted. Administration of 70% ethanol extract of S. guineense leaves reduced weight gain and food intake of pregnant rats at value <0.05. The crown-rump length of the near-term rat fetus was significantly reduced in rats treated with 1000 mg/kg body weight of S. guineense extract ( value <0.05). The plant extract did not affect the number of implantations, fetal resorptions, live births, and stillbirths. The weight of the fetuses and the placentae also decreased dose-dependently. Decidual cystic degeneration was the most prevalent histopathological change observed in a rat’s placenta treated with 1000 mg/kg body weight of S. guineense extract. Consumption of S. guineense leaves, especially at a high dose, may affect fetal development. Therefore, liberal use of S. guineense leaves during pregnancy should be avoided.

Review Article

Sex Difference in Cisplatin-Induced Nephrotoxicity: Laboratory and Clinical Findings

Cisplatin (CP) as the most important anticancer drug has limited usage due to a lot of side effects such as nephrotoxicity. Additionally, nephrotoxicity is gender/sex-related. There is a variety of experimental studies in association with sex and CP-induced nephrotoxicity. Some studies have reported that female sex is resistant than male sex due to greater antioxidant defense and protective effects of estrogen in females. Other studies have indicated that males are less vulnerable than females due to CP high clearance. Also, various supplementations have revealed conflicting effects in males and females. It is uncovered that sex hormones have determinant roles on the conflicting effects. Some supplements could improve CP-induced nephrotoxicity, but several supplements intensified CP-induced nephrotoxicity, especially in female sex. On the other hand, major clinical studies introduced female gender as a risk factor of CP-induced nephrotoxicity. Although, rare studies evaluated the effect of various supplemental compounds on CP-induced nephrotoxicity in patients underwent CP therapy. Therefore, it requires further investigations to clarify the controversial subject of gender/sex and CP-induced nephrotoxicity in both clinic and laboratory.

Research Article

Effect of Coated Silver Nanoparticles on Cancerous vs. Healthy Cells

Unique properties of silver nanoparticles (NPs) ensure their wide applications, in biomedicine; for this reason, it is very important carefully to study the toxicity of such NPs. The influence of silver nanoparticles coated with natural resin (Ag NPs) on the morphological and functional features of healthy BHK-21 and cancerous Hep-2 cells were studied using fluorescence microscopy, MTT, and neutral red assays. Ag NPs induced morphological changes in both cell cultures. The modifications were dose-dependent and more pronounced with an increase in NPs concentration. The IC50 value of Ag NPs for Hep-2 cells was found to be 2.19 ± 0.22 µg/mL, whereas for BHK-21 cells it was significantly (5x) higher at 10.92 ± 2.48 µg/mL. The use of NPs at a concentration close to IC50 leads to significant increase (up to 40%) in the number of necrotic cells in cancerous cell population and a decrease in the number of mitotic cells (up to 1.3%). In noncancerous cells the cellular parameters were similar to the control cells. These data suggest that the silver nanoparticles coated with natural resin can be potentially used in cancer therapy.

Research Article

Linking Measure of the Tropical Stingless Bee (Apidae, Meliponini, and Heterotrigona itama) Honey Quality with Hives Distance to the Source of Heavy Metal Pollution in Urban and Industrial Areas in Sabah, Borneo

Honey is a natural product of bees, and its chemical composition depends on the nectar sources of the surrounding flora as well as environmental factors. However, keeping hives in areas polluted with heavy metals can affect the quality of bee products such as honey. To date, there have been very few studies on the health risks of consuming honey at various locations in the Malaysian state of Sabah, Borneo, in relation to food standards and heavy metal contamination of honey from the stingless bee, Heterotrigona itama in association with pollutant sources. A total of 63 samples of raw and unprocessed honey were collected directly from beekeepers producing honey at five sites in the industrial areas. All selected heavy metals were measured using an inductively coupled plasma optical emission spectrophotometer (ICP-OES). Overall, the most frequently detected element was Zn (0.090 mg/kg), followed by Pb (0.012 mg/kg), As (0.004 mg/kg), and Cr (0.003 mg/kg), while Cd (0.001 mg/kg) was the lowest element in honey from all areas. With the exception of Cr and Zn, a significant correlation was found between PCA factor score 1 and heavy metal concentration in honey for Pb, Cd, and As, suggesting that the source of pollution for these metal elements was from hives closer to major roads, cities/town, petrochemical hub, and power plants. Although the heavy metal concentrations in the honey samples did not exceed the food standard limits and therefore do not pose a health risk, the observed increase in heavy metal concentrations in honey in industrial areas could pose a potential risk in the future due to the growing interest in rearing of stingless bees for honey production in these areas of Sabah.

Research Article

Evidence on the Heroin-Mediated Impairment of the Oxidative Status of Erythrocytes

Away from hemorheological properties, the effect of heroin addiction on erythrocytes is poorly investigated. This study aimed to investigate the oxidative impacts of heroin administration on erythrocytes. Study subjects included chronic intravenous heroin addicts and control subjects. Hematological analysis and redox parameters were measured, including serum concentration of methemoglobin ([MethHb]), serum glutathione peroxidase-1 ([GPX-1]), serum glutathione peroxidase (GPX) activity, erythrocytic protein carbonyl content, and oxidized to reduced glutathione (GSSG/GSH) ratio. Hematological analysis revealed that addicts had a significantly higher red cell distribution width, consistent with the mild anisocytosis and poikilocytosis of erythrocytes. As compared to control subjects, significantly higher levels of serum [Met-Hb], [GPX-1], and GPX activity () were reported among addicted subjects. A significant association between [MetHb] and GPX activity was observed with r = 0.764 (). Furthermore, significantly higher erythrocytic protein carbonyl contents and GSSG/GSH ratio were evident among heroin addicts () that were significantly associated with r = 0.429 (). Results demonstrate preliminary evidence that heroin addiction is implicated in impaired redox status of erythrocytes. Considering the pharmacokinetics of heroin, erythrocytic antioxidant mechanisms, and turnover rate, further investigation is required to evaluate the extent and clinical outcomes, especially upon over-dose administration.

Research Article

Toxicity Analysis of Hybrid Nanodiamond/Fe3O4 Nanoparticles on Allium cepa L

Background and Objective. The study of the toxicity of hybrid nanoparticles is necessary before they are synthesized in the laboratory and used in any particular applications. The toxic behaviour of nanoparticles can cause harm for the living species on the Earth. The production of biocompatible hybrid nanoparticles is important. Hence, this study is aimed at determining that nanodiamond/Fe3O4 hybrid nanoparticles were prepared and used for the toxicity analysis on Allium cepa L. Materials and Methods. The chemicals of hydrochloric acid, nitric acid, FeCl3.6H2O, FeCl2.4H2O, NaCl, and NaOH (Sigma-Aldrich chemicals, USA) were utilized in this study. A statistical analysis was performed on the results with a prevalence of . Results. A novel ND/Fe3O4 nanocomposite material was successfully synthesized by the in-situ method and characterized by various characterization techniques. The analysis of X-ray diffraction indicated the formation of an ND/Fe3O4 nanocomposite with both participating phases. The saturation magnification of the ND/Fe3O4 nanocomposite is 13.2 emu/g, whereas for a pure Fe3O4 nanomaterial, it is 47 emu/g. The weight rates of ND and Fe3O4 existent in the nanocomposite are 28% and 72%, respectively. From the electrical conductivity analysis, ND/Fe3O4 exhibits conductivity in the order of 27 times more compared to ND. Conclusion. The result implies that the product ND/Fe3O4 has both magnetic and electrical properties. The biocompatibility of the synthesized ND/Fe3O4 material was studied based on the in-vitro method.

Journal of Toxicology
 Journal metrics
See full report
Acceptance rate23%
Submission to final decision101 days
Acceptance to publication18 days
CiteScore7.300
Journal Citation Indicator0.670
Impact Factor-
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.