International Journal of Rotating Machinery
 Journal metrics
See full report
Acceptance rate25%
Submission to final decision108 days
Acceptance to publication26 days
CiteScore2.200
Journal Citation Indicator0.300
Impact Factor-

Article of the Year 2021

Optimization Analysis of Automotive Asymmetric Magnetic Pole Permanent Magnet Motor by Taguchi Method

Read the full article

 Journal profile

International Journal of Rotating Machinery publishes original research articles as well as review articles on all types of rotating machinery employing gas, vapor, particle, liquid, and their mixtures (including slurry) as the working substances.

 Editor spotlight

Chief Editor, Professor Amano, is based at the University of Wisconsin–Milwaukee and his research concentrates on the enhancement of energy production using wind, biomass, alternate fuels, and fossil energy sources.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Film Effectiveness Downstream the Trenches with Tilted Target Wall

Film cooling is a commonly-accepted effective way to protect the gas turbine hot sections from the high temperature products of the combustion chamber. Numerous film hole geometries have been the subject of investigation by many researchers over the past three decades with the aim of keeping the target wall under the maximum allowable temperature with the least amount of precious cooling air and minimum aerodynamic losses. In this study, we are proposing a new trench geometry that is fed by 30°-inclined embedded circular film holes entering from the trench sidewall. The cooling jets impinge on the opposite wall of the trench which is tilted towards the jets and then is pushed over the coverage wall by the main flow. Three trench geometries with the same exit area and tilt angles (the angle between the trench side- and top-wall) of 75°, 90°, and 105° degrees are tested for three blowing ratios of 0.5, 0.75, and 1.0, and the film effectiveness results are compared using the adiabatic pressure sensitive paint technique. CFD analyses are also performed using the realizable turbulence model with the enhanced wall function option. Major conclusions of this study were that the trench geometry with the trench tilt angle of 75°, corresponding to the smallest trench volume, had the best performance at the lowest blowing ratio, and good agreement was observed between the CFD and test results.

Research Article

Study on Contact Force and Vibration Characteristics of Composite Cylindrical Roller Bearing

The composite cylindrical roller is composed of a hollow cylindrical roller and a filler body and is a new type of structure roller bearing. In order to explore the influence of different parameters on the contact characteristics and vibration characteristics of bearings, finite element models of static contact, modal analysis, and harmonic response analysis of composite cylindrical roller bearings were established based on ABAQUS software. The effects of filling rate, radial force, and the number of rollers on parameters such as contact force, contact stress, and natural frequency were studied. The results show that when the filling rate of the cylindrical roller increases from 0% to 70%, the natural frequency of bearing and the peak frequency of its harmonic response decrease, the force distribution in the contact area is also more uniform, and the maximum contact stress of the roller is reduced by 29.1%; the radial force has no effect on the peak frequency of the harmonic response of the bearing, but the increase of the radial force will increase the peak value of the response displacement, and the contact force and stress of the rollers will also increase. When the number of rollers increases from 11 to 15, the natural frequency and the peak frequency of harmonic response increase, the peak displacement decreases, the contact force distribution of the rollers in the bearing area is more uniform, and the maximum contact stress of the roller is reduced by 21.1%. The research result can provide a theoretical reference for the structural optimization and engineering application of elastic composite cylindrical roller bearings.

Research Article

Dusting Hole Film Cooling Heat Transfer on a Transonic Turbine Blade Tip

Investigated is a transonic turbine blade tip with a squealer rim and a squealer recess, with a single dusting film cooling hole contained within the leading edge region of the squealer recess. Data are provided for transonic flow conditions for a range of film cooling blowing ratios for two tip gap values, using a linear cascade, with no relative motion between the blade and the casing. Surface heat transfer characteristics are measured using the transient impulse-response measurement approach, employed with infrared thermography. Line-averaged adiabatic film cooling effectiveness values, for the 1.4 mm tip gap, are generally very small along the pressure side rim, with only small, locally increased values along the suction side rim. For the 0.8 mm tip gap, line-averaged adiabatic film cooling effectiveness values are generally somewhat higher along the pressure side rim and along the suction side rim. In general, effectiveness values for both tip gap values, for these locations, and for the recess region, increase as the blowing ratio increases. As the tip gap decreases from 1.4 mm to 0.8 mm, line-averaged adiabatic film cooling effectiveness generally increases on the rims and downstream regions of the recess, with increased magnitudes which are spread over larger spatial surface areas. For tip gaps of 0.8 mm and 1.4 mm, for regions where the line-averaged heat transfer coefficient ratio deviates significantly from 1.00, values generally decrease as the blowing ratio increases. Across every region of the blade, line-averaged heat transfer coefficient ratios either decrease or remain approximately invariant, as the tip gap value decreases from 1.4 mm to 0.8 mm.

Research Article

Effects of Diffusion Film Hole Exit Area on the Film Cooling Effectiveness

One popular method for the protection of gas turbines’ hot sections from high-temperature combustor gases is film cooling. Substantial amounts of research have been conducted to accomplish this task with the minimum cooling flow, maximum surface coverage, and minimal aerodynamic inefficiencies or structural penalties. In this study, a combined experimental and numerical investigation was conducted on three selected film-cooling hole geometries. These geometries were designed with the same initial metering (feed) section, a cylindrical hole of 30° inclination angle, followed by three different forward expansion section geometries. The expansion sections had a 7° laid-back angle and a 17° expansion angle in each lateral direction. However, different interior corner radii were used to blend the metering hole to the exit area, creating three different expansion geometries with almost the same exit areas. In practice, this variation in expansion geometry could represent manufacturing faults or tolerances in laser drilling of the film holes. This study shows that the variations in film-cooling effectiveness are not significant even though the expansion geometries are significantly different. The Pressure Sensitive Paint (PSP) technique was used to obtain the detailed distribution of film-cooling effectiveness on the surface area downstream of these film holes. Adiabatic film cooling effectiveness was measured at blowing ratios of 0.5, 1.0, and 2.0. CFD models of these film holes were also run, and the results were compared with the test data. The major conclusions of this study were that these proposed new geometries produced higher film effectiveness than the conventional 7°-7°-7° diffusion film holes, for the same exit area, the expansion section geometry of the film holes did not have a significant effect on the film coverage, and the numerical results were in good agreement with the test data.

Research Article

Analysis for Hydrodynamic Wedge-Platform Thrust Slider Bearing with Ultralow Surface Separation

For the case of ultralow surface separation, in a hydrodynamic wedge-platform thrust slider bearing, the outlet zone and a portion of the inlet zone are in boundary lubrication, while most of the inlet zone is in the multiscale lubrication contributed by both the adsorbed boundary layer and the intermediate continuum fluid film. The present paper first presents the mathematical derivations for the generated pressure and carried load of this bearing based on the governing equation for boundary lubrication and the multiscale flow equation. Then, the full numerical calculation is carried out to verify the analytical derivations. It was found that the mathematical derivations normally have considerable errors when calculating the hydrodynamic pressure distribution in the bearing, owing to introducing the equivalent parameter which is constant in the inlet zone; however they can be used to calculate the carried load of the bearing when the surface separation in the outlet zone is sufficiently high. The study suggests the necessity of the numerical calculation of the hydrodynamic pressure and even the carried load of this bearing. It is also shown that owing to the fluid-bearing surface interaction, the pressure and carried load of this bearing are significantly greater than those calculated from the classical hydrodynamic theory.

Research Article

Modelling of Hydroabrasive Erosion in Pelton Turbine Injector

Sand particle-led erosion in the turbine parts of hydropower projects (excluding storage type projects) based on Himalaya-originated Rivers is one of the key operational challenges for concerned hydropower stations. Researchers have made multiple attempts to understand the nature of erosion and its combating technique by using numerical and experimental modelling techniques. This study relates to numerical and experimental modelling of sand particle-led erosion in the injector of the most preferred high head turbine, i.e., the Pelton turbine, followed by a comparative analysis of both techniques. This article attempts to compare erosion qualitatively and quantitatively, thus adding to the current state of the art of turbine erosion modelling. The results direct that the erosion-prone area is the needle seat in the nozzle and the region between the needle tip and nozzle exit in the needle, similar to findings reported by authors performing field setting research. The innovative aspect of the study is that by mapping the shape of the initial and eroded needle, mass lost in the erosion-prone area (as indicated by numerical erosion modelling) is calculated and compared against numerical modelling results. With the Oka erosion model employed for numerical modelling, the error in computation is about 31%. The nature of erosion in a partially open injector reveals that erosion in the needle increases with the nozzle’s partial opening. Nozzle erosion spreads away from the needle seat to the whole nozzle body. As commonly understood, the erosion of turbine parts gives rise to mechanical vibrations (especially in rotating parts) and energy loss. Numerical modelling results of injector erosion’s effect on jet energy are also presented. With uniformly spread erosion of 0.5 mm in both the needle and nozzle, loss in jet energy is 5.63%.

International Journal of Rotating Machinery
 Journal metrics
See full report
Acceptance rate25%
Submission to final decision108 days
Acceptance to publication26 days
CiteScore2.200
Journal Citation Indicator0.300
Impact Factor-
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.